Knot Concordance and Torsion

نویسنده

  • Charles Livingston
چکیده

The classical knot concordance group, C1, was defined in 1961 by Fox [F]. He proved that it is nontrivial by finding elements of order two; details were presented in [FM]. Since then one of the most vexing questions concerning the concordance group has been whether it contains elements of finite order other than 2–torsion. Interest in this question was heightened by Levine’s proof [L1, L2] that in all higher odd dimensions the knot concordance group contains an infinite summand generated by elements of order 4. In our earlier work studying this problem we proved the following [LN]:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Algebraic Concordance Order of a Knot

Since the inception of knot concordance, questions related to torsion in the concordance group, C1, have been of particular interest; see for instance [6, 8, 14]. The only known torsion in C1 is 2–torsion, arising from amphicheiral knots, whereas Levine’s analysis of higher dimensional concordance revealed far more 2–torsion and also 4–torsion in C2n−1, n > 1. Casson and Gordon [1, 2] demonstra...

متن کامل

Infinite Order Amphicheiral Knots

In 1977 Gordon [G] asked whether every class of order two in the classical knot concordance group can be represented by an amphicheiral knot. The question remains open although counterexamples in higher dimensions are now known to exist [CM]. This problem is more naturally stated in terms of negative amphicheiral knots, since such knots represent 2–torsion in concordance; that is, if K is negat...

متن کامل

Obstructing Four-Torsion in the Classical Knot Concordance Group

In his classification of the knot concordance groups, Levine [L1] defined the algebraic concordance groups, G±, of Witt classes of Seifert matrices and a homomorphism from the odd-dimensional knot concordance groups C4n±1 to G±. The homomorphism is induced by the function that assigns to a knot an associated Seifert matrix: it is an isomorphism on Ck, k ≥ 5; on C3 it is injective, onto an index...

متن کامل

LINK CONCORDANCE, HOMOLOGY COBORDISM, AND HIRZEBRUCH-TYPE DEFECTS FROM ITERATED p-COVERS

We obtain new invariants of topological link concordance and homology cobordism of 3-manifolds from Hirzebruch-type intersection form defects of towers of iterated p-covers. Our invariants can extract geometric information from an arbitrary depth of the derived series of the fundamental group, and can detect torsion which is invisible via signature invariants. Applications illustrating these fe...

متن کامل

LINK CONCORDANCE, HOMOLOGY COBORDISM, AND HIRZEBRUCH-TYPE INTERSECTION FORM DEFECTS FROM TOWERS OF ITERATED p-COVERS

We obtain new invariants of topological link concordance and homology cobordism of 3-manifolds from Hirzebruch-type intersection form defects of towers of iterated p-covers. Our invariants can extract geometric information from an arbitrary depth of the derived series of the fundamental group, and can detect torsion which is invisible via signature invariants. Applications illustrating these fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999